
˜

A “learned” approach to quicken and
compress rank/select dictionary

[ALENEX21]

Antonio Boffa, Paolo Ferragina, Giorgio Vinciguerra

acube.di.unipi.it

PRIN Meeting 12/03/2021

http://acube.di.unipi.it/

˜
Rank/Select dictionary

• Given a set 𝑆 of 𝑛 integers drawn from a universe of size 𝑢

• Store them in compressed form

• Implement 𝑟𝑎𝑛𝑘(𝑥): number of elements in 𝑆 which are ≤ 𝑥

• Implement 𝑠𝑒𝑙𝑒𝑐𝑡(𝑖): the 𝑖th smallest element in 𝑆

3 6 10 15 18 22 40 43 47 53

𝑆𝑒𝑙𝑒𝑐𝑡 2

𝑅𝑎𝑛𝑘(21)
5

• Building block of succinct data structures for texts, genomes,
graphs, hash tables, etc.

2

˜
Patterns

• New applications produce data with inherent patterns and trends (IoT, I4.0, etc.)

• It is inefficient to design a system for every specific pattern/data distribution

• Machine Learning techniques automatically discover and exploit patterns

3

˜
Learned Data Structures

• Unexpected combination of Machine Learning and Data Structures

• Learned Indexes are achieving significant results in practice

• Some preliminary results are appearing in theory too [Ferragina et al., ICML 2020]

4

˜
Learned Data Structures

• Which ML model?

• Trade offs between model complexity and its performance

• Deep Neural Networks?

• Linear Regression?

• Piecewise Linear Approximation (PLA)

• Effective compromise [Ferragina et al., VLDB 2020]

• Pairs (𝑖, 𝑆[𝑖])

• Map the pairs in a Cartesian plane

• Choose maximum error 𝜀

5

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

˜
Our Proposal: the LA-vector

• Combination of

• Segments (𝑠1, 𝑠2)

• Vector of corrections (𝐶)

6

3 6 10 15 18 22 40 43 47 53

1 2 3 4 5 6 7 8 9 10

• Compression scheme

• 𝑆[𝑝] = 𝑠𝑙𝑜𝑝𝑒 ⋅ 𝑝 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐶 𝑝

˜
Complexity analysis

• Segments as efficient representations of sequences of integers

with an information loss of ε

• Space occupancy = 𝑏ℓ + 𝑐𝑛 bits, where

• 𝑏 = space for a segment = log 𝑛 + log 𝑢 + 𝑤

• ℓ = #segments, that is the model complexity

• 𝑐 = log 2𝜀 + 1

• Select time = 𝑂 1

• Rank time = 𝑂 log ℓ + 𝑐

… so everything depends on the number of segments?
7

˜
Complexity analysis

• In turn the number of segments depends on

• The size of the input dataset

• How the points (𝑝𝑜𝑠, 𝑘𝑒𝑦) map to the plane

• The value 𝜀, i.e. how much the approximation is precise

k
e

y
s

positions

k
e

y
s

positions

k
e

y
s

position

𝜺𝟏 𝜺𝟐 ≪ 𝜺𝟏

8

˜
Suppose that the gaps between the sorted integers are a realisation of a random process with

finite mean and variance.

Then the expected number of keys covered by a segment with maximum error 𝜺 is

𝚯 (𝜺𝟐)

and the segments on 𝒏 keys are, whp,

𝚯
𝒏

𝜺𝟐

Practically the #segments is order of magnitudes smaller than 𝑛 [Ferragina et al., VLDB 2020]

9

Theoretical result
[Ferragina et al., ICML 2020]

˜

Theoretical comparison against
Elias-Fano

• LA-vector uses less space than EF if

ℓ = 𝑶
𝒏

𝐥𝐨𝐠𝒏

• From the previous theoretical results this holds for

𝜺 = 𝜴(𝐥𝐨𝐠𝒏)

10

˜
Space optimization

• One epsilon for all the dataset could waste space

11

• Our idea to optimize space:
• Partition the dataset according to its regularities

• Use a different 𝜺 for each partition

• Reduction to the shortest path problem on ad hoc graphs

• We propose a greedy approximation algorithm
• Taking 𝑂(𝑛 log𝑢) time and 𝑂(𝑛) space

• Losing only a constant factor of bits wrt the minimum sized LA-vector

˜

12

Experiments

Nanoseconds per query

B
it
s
 p

e
r

in
te

g
e
r

Our solution (varying 𝜀)

Our space-optimized solution

sdsl::rrr_vector (varying block size)

sdsl::sd_vector (Elias-Fano)

sdsl::enc_vector (Gap-encoding+

Elias 𝛾/𝛿-code)

ds2i::partitioned_EF_uniform

ds2i:: partitioned_EF_optimal

𝛾/𝛿

B
it
s
 p

e
r

in
te

g
e
r

Nanoseconds per query

˜
Conclusions

• First learned and compressed data structure for rank/select

• Proved theoretical results which compare favourably to Elias-Fano

• Experimentally
• New interesting space-time trade-offs

• Our Select is the fastest

• Our Rank is on the Pareto curve

• Take home message:
• LA-vector is a novel tool for building efficient rank/select data structures

• Two ingredients: linear 𝜺-approximation and fixed-len integer compression (vector 𝑪)

• Preliminary research, it opens several interesting new lines of research

13

