34
UNIVERSITA DI P1SA

A “learned” approach to quicken and
compress rank/select dictionary
[ALENEX21]

~/

PRIN Meeting 12/03/2021

Antonio Boffa, Paolo Ferragina, Giorgio Vinciguerra

3
ALab

acube.di.unipi.it

http://acube.di.unipi.it/

Rank/Select dictionary

* Givenaset S of nintegers drawn from a universe of size u
* Storethemin compressed form
* Implement rank(x): number of elements in S which are < x
* Implementselect(i): the ith smallest elementin S

Select(2) _‘
316110]15|18(22(40143147]53

\ _J
Rank(21) v

» Building block of succinct data structures for texts, genomes,
graphs, hash tables, etc.

Patterns

~

« New applications produce data with inherent patterns and trends (loT, 14.0, etc.)

It is inefficient to design a system for every specific pattern/data distribution

Machine Learning techniques automatically discover and exploit patterns

'y - " A .,_.'.,
—— =" TN
) = R i
-8 m— ! o 3
- ﬁ . i]
x‘ AT N — 1 —

Learned Data Structures

~

» Unexpected combination of Machine Learning and Data Structures
* Learned Indexes are achieving significant results in practice

« Some preliminary results are appearing in theory too [Ferragina et al., ICML 2020]

(a) B-Tree Index (b) Learned Index
Key Key
\/
Model
BTree 9. NN
pos pos

I

pos-0 pos + pagezise poS - min_err pos + max_er

Figure 1: Why B-Trees are models

Learned Data Structures

¢ Which ML model? § »
* Trade offs between model complexity and its performance >
* Deep Neural Networks? >
* Linear Regression? j g
* Piecewise Linear Approximation (PLA)] . /
* Effective compromise [Ferragina et al., VLDB 2020] :
* Pairs (i, S[i]) /
* Map the pairs in a Cartesian plane)

* Choose maximum error ¢

2 111112115118 |23 |24)129|31|34|36|44|47|48|55]|59|60)71|73|74)76]|88|95]99]102|115]122]123]128|140]145]|146

Our Proposal: the LA-vector

3|16 (10(15(18 40173 47|53 23 sy = (7,6,37)
LT 4 5 6 7 8 9 10 13 7
= i /
e Combination of % ¢ (@[1]o]o].2]-3) HENENED
e Segments(sy,s,) l %g
* Vector of corrections (C) 15
12 s1=(1,5,0)
: 3
* Compression scheme

* S[p] = slope-p + intercept + C|p] ;

Complexity analysis

* Segments as efficient representations of sequences of integers
with an information loss of €

e Space occupancy = b€ + cn bits, where

* b =space forasegment =logn+logu +w
* ¢ = #segments, that is the model complexity
* c=log(2e +1)

* Selecttime=0(1)
* Ranktime=0(og? + ¢)

... So everything depends on the number of segments?

Complexity analysis

* |nturnthe number of segments depends on

* Thesize of the input dataset
How the points (pos, key) map to the plane
* Thevalue g, i.e. how much the approximation is precise

keys

positions

keys

positions

& KeEg /

’ £

position

Theoretical result

|Ferragina et al., ICML 2020}

~

Suppose that the gaps between the sorted integers are a realisation of a random process with
finite mean and variance.

Then the expected number of keys covered by a segment with maximum error €is

0 (£%)

°(2)

Practically the #segments is order of magnitudes smaller than n [Ferragina et al., VLDB 2020]

and the segments on n keys are, whp,

Theoretical comparison against
Elias-Fano

LA-vector uses less space than EF if
n
t=0 ()
logn

From the previous theoretical results this holds for

e= 0(./logn)

Space optimization

~

One epsilon for all the dataset could waste space

. . . . N\ U4
e Our idea to optimize space: _@_
* Partition the dataset according to its regularities N\
* Use a different & for each partition e

* Reduction to the shortest path problem on ad hoc graphs

* We propose a greedy approximation algorithm

* Taking O(nlogu) time and 0(n) space
* Losing only a constant factor of bits wrt the minimum sized LA-vector

Experiments

~

A
X Our solution (varying ¢) SGRAM (9.845%)
X
& Our space-optimized solution .
X
) . . g 10 | x
v sdsl::rrr_vector (varying block size) £ X\
z | % TRL (1.303%
sdsl::sd_vector (Elias-Fano) a “' JRL (1.393%)
@ 59 4 v |
/5 sdsl::enc_vector (Gap-encoding+ &5__ , v .
719 Elias y/8-code) A v| hl‘J
] ! ! » () X
. 2 1y
| ds2i:partitioned_EF_uniform 200400600 800 = o
Nanoseconds per query '%10] '§ I
B ds2i:: partitoned_EF_optimal > 1Y
@ _ | @
5 \ - a0 i B ;
.. o =) R
! T T T T T T T »
0 500 1,000 1,500

Nanoseconds per query

©

Conclusions

~

First learned and compressed data structure for rank/select
Proved theoretical results which compare favourably to Elias-Fano

Experimentally

* New interesting space-time trade-offs
* QurSelectis the fastest
* Qur Rankis onthe Pareto curve

Take home message:

* LA-vector is a novel tool for building efficient rank/select data structures
* Twoingredients: linear e-approximation and fixed-len integer compression (vector C)

Preliminary research, it opens several interesting new lines of research

