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˜
Rank/Select dictionary

• Given a set 𝑆 of 𝑛 integers drawn from a universe of size 𝑢

• Store them in compressed form 

• Implement 𝑟𝑎𝑛𝑘(𝑥): number of elements in 𝑆 which are ≤ 𝑥

• Implement 𝑠𝑒𝑙𝑒𝑐𝑡(𝑖): the 𝑖th smallest element in 𝑆
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• Building block of succinct data structures for texts, genomes, 
graphs, hash tables, etc.
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˜
Patterns

• New applications produce data with inherent patterns and trends (IoT, I4.0, etc.)

• It is inefficient to design a system for every specific pattern/data distribution

• Machine Learning techniques  automatically discover and exploit patterns
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˜
Learned Data Structures

• Unexpected combination of Machine Learning and Data Structures

• Learned Indexes are achieving significant results in practice

• Some preliminary results are appearing in theory too [Ferragina et al., ICML 2020]
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˜
Learned Data Structures 

• Which ML model? 

• Trade offs between model complexity and its performance

• Deep Neural Networks?

• Linear Regression? 

• Piecewise Linear Approximation (PLA)

• Effective compromise [Ferragina et al., VLDB 2020]

• Pairs (𝑖, 𝑆[𝑖])

• Map the pairs in a Cartesian plane 

• Choose maximum error 𝜀
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˜
Our Proposal: the LA-vector

• Combination of 

• Segments (𝑠1, 𝑠2)

• Vector of corrections (𝐶)
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• Compression scheme

• 𝑆[𝑝] = 𝑠𝑙𝑜𝑝𝑒 ⋅ 𝑝 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐶 𝑝



˜
Complexity analysis

• Segments as efficient representations of sequences of integers 

with an information loss of ε

• Space occupancy = 𝑏ℓ + 𝑐𝑛 bits, where

• 𝑏 = space for a segment = log 𝑛 + log 𝑢 + 𝑤

• ℓ = #segments, that is the model complexity

• 𝑐 = log 2𝜀 + 1

• Select time = 𝑂 1

• Rank time = 𝑂 log ℓ + 𝑐

… so everything depends on the number of segments?
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˜
Complexity analysis

• In turn the number of segments depends on

• The size of the input dataset

• How the points (𝑝𝑜𝑠, 𝑘𝑒𝑦) map to the plane

• The value 𝜀, i.e. how much the approximation is precise
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˜
Suppose that the gaps between the sorted integers are a realisation of a random process with

finite mean and variance.

Then the expected number of keys covered by a segment with maximum error 𝜺 is

𝚯 (𝜺𝟐)

and the segments on 𝒏 keys are, whp, 

𝚯
𝒏

𝜺𝟐

Practically the #segments is order of magnitudes smaller than 𝑛 [Ferragina et al., VLDB 2020]
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Theoretical result
[Ferragina et al., ICML 2020]



˜

Theoretical comparison against 
Elias-Fano

• LA-vector uses less space than EF if

ℓ = 𝑶
𝒏

𝐥𝐨𝐠𝒏

• From the previous theoretical results this holds for

𝜺 = 𝜴( 𝐥𝐨𝐠𝒏)
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˜
Space optimization

• One epsilon for all the dataset could waste space
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• Our idea to optimize space: 
• Partition the dataset according to its regularities

• Use a different 𝜺 for each partition

• Reduction to the shortest path problem on ad hoc graphs

• We propose a greedy approximation algorithm 
• Taking 𝑂(𝑛 log𝑢) time and 𝑂(𝑛) space

• Losing only a constant factor of bits wrt the minimum sized LA-vector



˜
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Experiments

Nanoseconds per query
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Our solution (varying 𝜀)

Our space-optimized solution 

sdsl::rrr_vector (varying block size)

sdsl::sd_vector (Elias-Fano)

sdsl::enc_vector (Gap-encoding+

Elias 𝛾/𝛿-code)

ds2i::partitioned_EF_uniform

ds2i:: partitioned_EF_optimal

𝛾/𝛿
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˜
Conclusions

• First learned and compressed data structure for rank/select

• Proved theoretical results which compare favourably to Elias-Fano

• Experimentally
• New interesting space-time trade-offs

• Our Select is the fastest

• Our Rank is on the Pareto curve

• Take home message:
• LA-vector is a novel tool for building efficient rank/select data structures 

• Two ingredients: linear 𝜺-approximation and fixed-len integer compression (vector 𝑪)

• Preliminary research, it opens several interesting new lines of research
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