

A "learned" approach to quicken and compress rank/select dictionary [ALENEX21]

PRIN Meeting 12/03/2021

Antonio Boffa, Paolo Ferragina, Giorgio Vinciguerra

Rank/Select dictionary

- Given a set S of n integers drawn from a universe of size u
 - Store them in compressed form
 - Implement rank(x): number of elements in S which are $\leq x$
 - Implement *select*(*i*): the *i*th smallest element in *S*

• Building block of succinct data structures for texts, genomes, graphs, hash tables, etc.

Patterns

- New applications produce data with inherent patterns and trends (IoT, I4.0, etc.)
- It is inefficient to design a system for every specific pattern/data distribution
- Machine Learning techniques automatically discover and exploit patterns

Learned Data Structures

- Unexpected combination of Machine Learning and Data Structures
- Learned Indexes are achieving significant results in practice
- Some preliminary results are appearing in theory too [Ferragina et al., ICML 2020]

Figure 1: Why B-Trees are models

Learned Data Structures

- Which ML model?
 - Trade offs between model complexity and its performance
 - Deep Neural Networks?
 - Linear Regression?
- Piecewise Linear Approximation (PLA)
 - Effective compromise [Ferragina et al., VLDB 2020]
 - Pairs (*i*, *S*[*i*])
 - Map the pairs in a Cartesian plane
 - Choose maximum error ε

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

Our Proposal: the LA-vector

- Combination of
 - Segments (s_1, s_2)
 - Vector of corrections (C)
- Compression scheme
 - $S[p] = slope \cdot p + intercept + C[p]$

Complexity analysis

- Segments as efficient representations of sequences of integers with an information loss of ε
- Space occupancy = $b\ell + cn$ bits, where
 - $b = \text{space for a segment} = \log n + \log u + w$
 - $\ell =$ #segments, that is the model complexity
 - $c = \log(2\varepsilon + 1)$
- Select time = O(1)
- Rank time = $O(\log \ell + c)$

... so everything depends on the number of segments?

Complexity analysis

- In turn the number of segments depends on
 - The size of the input dataset
 - How the points (*pos, key*) map to the plane
 - The value ε , i.e. how much the approximation is precise

Theoretical result [Ferragina et al., ICML 2020]

Suppose that the gaps between the sorted integers are a realisation of a random process with finite mean and variance.

Then the expected number of keys covered by a segment with maximum error ε is

 $\Theta(\varepsilon^2)$

and the segments on *n* keys are, whp,

$$\Theta\left(\frac{n}{\varepsilon^2}\right)$$

Practically the #segments is order of magnitudes smaller than n [Ferragina et al., VLDB 2020]

Theoretical comparison against Elias_Fano

• LA-vector uses less space than EF if

$$\ell = O\left(\frac{n}{\log n}\right)$$

• From the previous theoretical results this holds for

$$\varepsilon = \Omega(\sqrt{\log n})$$

Space optimization

• One epsilon for all the dataset could waste space

- Our idea to optimize space:
 - Partition the dataset according to its regularities
 - Use a different ε for each partition

• Reduction to the shortest path problem on *ad hoc* graphs

- We propose a greedy approximation algorithm
 - Taking $O(n \log u)$ time and O(n) space
 - Losing only a *constant factor* of bits wrt the minimum sized LA-vector

Experiments

X Our solution (varying ε)

- Our space-optimized solution
- sdsl::rrr_vector (varying block size)
- sdsl::sd_vector (Elias-Fano)
- γ/δ sdsl::enc_vector (Gap-encoding+ Elias γ/δ -code)
 - ds2i::partitioned_EF_uniform
 - ds2i:: partitioned_EF_optimal

Conclusions

- First learned and compressed data structure for rank/select
- Proved theoretical results which compare favourably to Elias-Fano
- Experimentally
 - New interesting space-time trade-offs
 - Our Select is the fastest
 - Our Rank is on the Pareto curve
- Take home message:
 - LA-vector is a novel tool for building efficient rank/select data structures
 - Two ingredients: linear ε -approximation and fixed-len integer compression (vector C)
- Preliminary research, it opens several interesting new lines of research

