

UniPi past and ongoing activity round-up [Tasks T1, T2, T3, T4]

~

Paolo FERRAGINA
Giuseppe PRENCIPE

Team

One new PhD student

Antonio Boffa
PhD Student
LinkedIn · Website

Francesco Tosoni
PhD Student
LinkedIn

Andrea Guerra
PhD Student

Team

One new PostDoc

Giorgio Vinciguerra
PhD Student
LinkedIn · Website

Department of Computer Science

Ph.D. Thesis

Learning-based compressed data structures

Giorgio Vinciguerra giorgio.vinciguerra@phd.unipi.it

Supervisor
Paolo Ferragina

Internal committee External referees

Luca Oneto Stratos Idreos

Università di Genova Harvard University

Salvatore Ruggieri Gonzalo Navarro
Università di Pisa Universidad de Chile

October 31, 2021

Why worst-case bounds are important?

Tuned Hybrid RMI implementation from Marcus et al. [VLDB 2021]

Latency over 100M query+ins ops

- PGM is faster for insert-heavy workloads (< 25% queries)
- PGM and ART are faster for balanced workloads (50% queries)
- ART is faster for query-heavy workloads (75% queries)
 - PGM, ART and ALEX are faster for query-only workloads (100% queries)

Dynamic scenario: overall memory usage

Overall = keys (8 bytes) + values (8 bytes) + index, including space due to half empty nodes/slots

- 1. PGM is the most memory-efficient (12.9 GB)
- 2. B-tree is the second-best (16.5 GB)
- 3. ALEX is +15% than B-tree, and +47% than PGM
- 4. ART is the most memory-hungry (34.6 GB)

Take-away msg:

- some learned indexes are larger than traditional ones
- PGM is fast in query/ins ops and very space succinct

The PGM software library

- Variants of the PGM
 - CompressedPGM
 - EliasFanoPGM
 - BucketingPGM
 - Big integers (up to 256 bytes)

pgm.di.unipi.it

MultidimensionalPGM

- Orthogonal range queries
- k-NN queries (thanks DBlab @ Nagoya Univ.)

Our Algorithm Engineering Achievements

TOPICS NEWS TEAM GRANTS CONTACT

Compressed and Learned Data Structures

Software & Datasets

PGM-index

An optimal learned data structure that enables fast point and range searches in arrays of billions of items using orders of magnitude less space than traditional indexes.

GitHub • Website

LA-vector

Compressed learned bitvector supporting efficient rank and select queries.

GitHub

FM-index v2

A full-text index data structure that combines compression and indexing by encapsulating in a single compressed file both the original file plus some indexing information. Website

Block-ε tree

Compressed rank/select dictionary exploiting approximate linearity and repetitiveness.

GitHub

Pizza & Chili

Datasets for compressed indexes and test collections bechmarking

GitHub · Website

Details on the Talks + SW Libraries + Papers of this year are available on the Web site of the project

Our Theory Achievements

Antonio Boffa, Paolo Ferragina, Giorgio Vinciguerra. A "learned" approach to quicken and compress rank/select dictionaries. ALENEX, 2021.

Cite Code DOI Experiments code & datasets Second round of review @ Journal

Paolo Ferragina, Fabrizio Lillo, Giorgio Vinciguerra. On the performance of learned data structures. Theor. Comput. Sci., 2021.

Cite Code DOI

Paolo Ferragina, Giovanni Manzini, Giorgio Vinciguerra. Repetition- and linearity-aware

rank/select dictionaries. ISAAC, 2021.

Cite Code DOI Journal version under preparation

Under patenting in Italy

