Indexing and compressing regular languages

Nicola Prezza, Ca’ Foscari university of Venice, Italy

Joint work with: Nicola Cotumaccio (GSSI), Giovanna D’Agostino (uniud), Alberto Policriti (uniud), Jarno Alanko (university of Helsinki), Davide Martincigh (uniud)
On the menu

1. Foundations: a theory of ordered regular languages
 a. Wheeler NFAs
 b. Wheeler languages
 c. Sorting any regular language: partial co-lex orders

2. Sortability hierarchies of regular languages

3. Complexity of sorting regular languages

4. Open problems
1.a Wheeler NFAs
Wheeler NFAs

WNFA = NFA whose states can be sorted in a **total order** respecting the co-lex axioms:

1. $\text{in}(u) < \text{in}(v) \Rightarrow u < v$
2. $u < v \& (u,u',a), (v,v',a) \in E \Rightarrow u' \leq v'$
Wheeler NFAs

WNFAs:

- Generalize the concept of *prefix sorting* from strings to labeled graphs
- Can be stored using $\log(\sigma) + O(1)$ bits per edge
- Support fast subpath queries
Subpath queries on WNFAs

Figure 11. Searching nodes reached by a path labeled “aba” in a Wheeler graph. Top left: we begin with the nodes reached by the empty string (full range). Top right: range obtained from the previous one following edges labeled ‘a’. Bottom left: range obtained from the previous one following edges labeled ‘b’. Bottom right: range obtained from the previous one following edges labeled ‘a’. This last range contains all nodes reached by a path labeled “aba”
1.b From Sorting NFAs to Regular Languages
A language-theoretical approach

[Alanko, D’Agostino, Policriti, P.. Regular languages meet prefix sorting. SODA’2020]

Let's take a step back, and study the problem as a problem on regular languages.

$L = (\varepsilon|aa)b(ab|b)^*$
A language-theoretical approach

[Alanko, D’Agostino, Policriti, P.. Regular languages meet prefix sorting. SODA’2020]

- L (regular, infinite) can be finitely represented as a DFA A.
- **Sort co-lexicographically** all prefixes of words in L.
- Map this information on A (WDFA). What happens?

$$L = (\varepsilon|aa)b(ab|b)^*$$
A language-theoretical approach

[Alanko, D'Agostino, Policriti, P.. Regular languages meet prefix sorting. SODA'2020]

- L (regular, infinite) can be finitely represented as a DFA A.
- Sort co-lexicographically all prefixes of words in L.
- Map this information on A (WDFA). What happens?

$L = (\varepsilon|aa)b(ab|b)^*$
A language-theoretical approach

[Alanko, D’Agostino, Policriti, P.. Regular languages meet prefix sorting. SODA’2020]

- L (regular, infinite) can be finitely represented as a DFA A.
- Sort co-lexicographically all prefixes of words in L.
- Map this information on A (WDFA). What happens?

States form intervals and we re-obtain the Wheeler order!

\[L = (\varepsilon|aa)b(ab|b)^* \]
Wheeler languages

Not a coincidence. From [Alanko et al. SODA'20]:

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

\[\iff \]

its Myhill-Nerode equivalence classes (\(\equiv\) states of minimum DFA) form a finite number of intervals in co-lex order.

L = (\(\varepsilon|aa\)b(ab|b)*)
Wheeler languages

Not a coincidence. From [Alanko et al. SODA’20]:

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇔

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a finite number of intervals in co-lex order.

Wheeler languages = regular languages recognized by Wheeler NFAs = regular languages recognized by Wheeler DFAs

L = (\epsilon|aa)b(ab|b)*
Wheeler languages

Note that also the following situation could occur:

- Some MN classes are split into multiple intervals (in the example: class 1)
- Still, the number of MN intervals is finite

Finite number of MN intervals on the total order ≡ Wheeler language
Wheeler languages

Note that also the following situation could occur:

● Some MN classes are split into multiple intervals (in the example: class 1)
● Still, the number of MN intervals is finite

- In this case, the **DFA is not Wheeler**, but the **language is**.
- 5 intervals \equiv 5 states of a **minimum Wheeler DFA** for the language.
- The gap between min-DFA and min-WDFA could be exponential

Finite number of MN intervals on the total order \equiv Wheeler language
Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:
Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)
Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

Sorted states of A
(Wheeler NFA)
Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

However, not all NFAs/languages are Wheeler! can we index arbitrary NFAs/languages?
1.c Partial co-lex orders
co-lex orders

[Cotumaccio and P. On Indexing and Compressing Finite Automata. SODA 2021]

Solution: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

\[\mathcal{L} = CT(CC)^*(TT)^* \]

Hasse diagram
co-lex orders

- We can partition states of A into \(p \) totally-ordered chains.
- The smallest \(p \) is the order’s **width** (in the example below, \(p = 2: \{\text{blue, yellow}\} \))

\[
\mathcal{L} = CT(CC)^*(TT)^*
\]

Hasse diagram
co-lex orders

Indexing and compression still work!

Indexing \equiv states reached by any string (“C”) always form a convex set in the partial order.

Convex set = p intervals on the p (totally-sorted) chains

$$\mathcal{L} = CT(CC)^*(TT)^*$$

Hasse diagram
co-lex orders

Indexing and compression still work!

Indexing \(\equiv \) states reached by any string ("C") always form a **convex set in the partial order**.

Convex set = p intervals on the p (totally-sorted) chains

Compression: \(|\text{BWT}| = O(\log p) \) bits per edge

\[\mathcal{L} = CT(C)^*(TT)^* \]

Hasse diagram

\[\text{BWT}(A) = (\text{IN,OUT}) \]
co-lex orders

Let $n =$ number of states, $m =$ number of edges.

[Cotumaccio, P. SODA'21] $p =$ width(A,\prec) is a fundamental parameter for NFAs:

- Powerset determinization explodes with 2^p (rather than 2^n) *

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
Let $n =$ number of states, $m =$ number of edges.

[Cotumaccio, P. SODA'21] $p =$ width$(A, <)$ is a fundamental parameter for NFAs:

- Powerset determinization explodes with 2^p (rather than 2^n)*
- NFA compression: $O(\log p)$ bits per edge (rather than $\log n$)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
co-lex orders

Let $n =$ number of states, $m =$ number of edges.

[Cotumaccio, P. SODA’21] $p = \text{width}(A, <)$ is a fundamental parameter for NFAs:

- Powerset determinization explodes with 2^p (rather than 2^n)*
- NFA compression: $O(\log p)$ bits per edge (rather than log n)
- NFA membership / pattern matching: $O(p^2)$ time per character (rather than m)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
2. Sortability Hierarchies of Regular Languages
Widths of a language

From [Cotumaccio, D’Agostino, Policriti, P. (ongoing work)]:

Definition Deterministic width $\text{width}^D(L)$ of L: smallest p such that there exists a DFA A with:

- $\text{width}(A) = p$
- $L(A) = L$

Widths of a language

From [Cotumaccio, D’Agostino, Policriti, P. (ongoing work)]:

Definition Deterministic width $\text{width}^D(L)$ of L: smallest p such that there exists a DFA with:

- $\text{width}(A) = p$
- $L(A) = L$

Definition Nondeterministic width $\text{width}^N(L)$ of L: Smallest p such that there exists a NFA with:

- $\text{width}(A) = p$
- $L(A) = L$
Widths of a language

From [Cotumaccio, D’Agostino, Policriti, P. (ongoing work)]:

Some results:

- Non-unicity of the smallest-width DFA (Myhill-Nerode theorem for any width\(^D\)(L))

- \(\text{width}^N(L) = \text{width}^D(L) = 1\) (total order) iff L is Wheeler.
Widths of a language

Which relations exist between \(\text{width}^N(L) \) and \(\text{width}^D(L) \)? We prove:
Widths of a language

Which relations exist between $\text{width}^N(L)$ and $\text{width}^D(L)$? We prove:

1. Both hierarchies are proper and do not collapse: for every p, there exists L such that $\text{width}^N(L) = \text{width}^D(L) = p$

```
p = Ack(10^{100},10^{100})
```

```
p = 1 (Wheeler languages)
```

```
p = 2
```

```
p = 3
```

```
p = 1 (Wheeler languages)
```

Deterministic

Non-deterministic
Widths of a language

Which relations exist between width$^N(L)$ and width$^D(L)$? We prove:

2. $\text{width}^N(L) \leq \text{width}^D(L) \leq 2^{\text{width}^N(L)} - 1$
3. There exist infinitely many L such that $\text{width}^D(L) \geq e^{\sqrt{\text{width}^N(L)}}$

Deterministic

\[p = \text{Ack}(10^{100}, 10^{100}) \]

\[p = 3 \]

\[p = 2 \]

\[p = 1 \text{ (Wheeler languages)} \]

Nondeterministic

\[p = \text{Ack}(10^{100}, 10^{100}) \]

\[p = 3 \]

\[p = 2 \]

\[p = 1 \text{ (Wheeler languages)} \]

Exponential gap for $p>1$
3. Complexity
Complexity

How hard is it to compute width(A) and width(L(A))?

<table>
<thead>
<tr>
<th>Compute</th>
<th>A: DFA</th>
<th>A: NFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>width(A)</td>
<td>$O(m^2 + n^{5/2})$ [1]</td>
<td>NP-hard [2]*</td>
</tr>
<tr>
<td>width(L(A))</td>
<td>$n^{O(width(L(A)) [4]**</td>
<td>PSPACE-hard [3]*</td>
</tr>
</tbody>
</table>

* completeness holds in the Wheeler (p=1) case.
** note: in P for Wheeler L(A).
Complexity

How hard is it to index a NFA A with the optimal width(A)?

[Cotumaccio, D'Agostino, Policriti, P. Ongoing work]

Note: computing width(A) is NP-hard, but it is actually possible to side-step this problem by using a different order (of no worse width and computable in polytime):
Complexity

How hard is it to **index** a NFA A with the optimal width(A)?

[Cotumaccio, D’Agostino, Policriti, P. Ongoing work]

Note: computing width(A) is NP-hard, but it is actually possible to side-step this problem by using a different order (of no worse width and computable in polytime):

Definition (glocal order) Let $q \preceq q'$ iff $(q \leq_1 q_1 \leq_2 q_2 \ldots \leq_k q')$ for some co-lex pre-orders $\leq_1, \leq_2, \ldots, \leq_k$ and some states q_1, \ldots, q_{k-1}.
Complexity

How hard is it to index a NFA A with the optimal width(A)?

[Cotumaccio, D’Agostino, Policriti, P. Ongoing work]

Note: computing width(A) is NP-hard, but it is actually possible to side-step this problem by using a different order (of no worse width and computable in polytime):

Definition (glocal order) Let $q \preceq q'$ iff $(q \leq_1 q_1 \leq_2 q_2 \ldots \leq_k q')$ for some co-lex pre-orders $\leq_1, \leq_2, \ldots, \leq_k$ and some states $q_1 \ldots q_{k-1}$.

Thm. It is possible to index a NFA A for the optimal width(A) in polynomial $O(|A|^6)$ time.
(infinite, unordered) list of open problems

1. Approximation algorithms for width(A) / width(L(A))
2. How does width(L) change with regexp operations?
3. Logical characterization of p-sortable languages (see Büchi’s theorem: MSO \equiv REG)
4. Indexability lower bounds as a function of width(A) (fine-grained complexity)
5. Zoo of NFA orders (complexity, relations between different notions of width,...)
6. Algorithms for minimizing width(A) and/or number of states
7. Repetitive graph compression: run-length BWT / graph attractors
8. Dynamic data structures: maintain small width upon edge insertions/deletions
9. Generalizations: string-labeled edges, sorting context-free languages, ...
10. ...