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ABSTRACT
MicroRNAs (miRNAs) are short endogenous molecules of RNA that influence cell regulation by
suppressing genes. Their ubiquity throughout all branches of the tree of life has suggested their
central role in many cellular functions. Nowadays, several personalized medicine applications
rely on miRNAs as biomarkers for diagnoses, prognoses, and prediction of drug response. The
increasing ease of sequencing miRNAs contrasts with the difficulty of accurately quantifying
their concentration. The use of general purpose aligners is only a partial solution as they have
limited possibilities to accurately solve ambiguous mapping due to the short length of these
sequences.

We developed EZcount, an all-in-one software that, with a single command, performs the
entire quantification process: from raw fastq files to read counts. Experiments show thatEZcount
is more sensitive and accurate than methods based on sequence alignment, independently of
the library preparation protocol and sequencing machine. The parallel architecture of EZcount
makes it fast enough to process a sample in minutes using a standard workstation.

EZcount runs on all of the most common operating systems (Linux, Windows and MacOS)
and is freely available for download at https://gitlab.com/BioAlgo/miR-pipe

A detailed description of the datasets, the raw experimental results, and all the scripts used
for testing are available as supplementary material.

1. Introduction
MicroRNAs (miRNAs) belong to a class of small non-coding RNAs, with length ranging approximately between

18 and 26 nucleotides, involved in the regulatory process as they are capable of inhibiting translation and, consequently,
silencing genes.

The massive presence of this class of RNAs in several functional pathways [4] and their ubiquity among different
organisms (currently miRBase [8], the largest specialized database, includes microRNA from about 270 organisms),
have attracted the attention of the research community which agrees to consider miRNA analysis as a tool that will
become fundamental in the diagnosis and treatment of several complex diseases. For example, applications in oncology
have already demonstrated that miRNA expression profiles can be used successfully as non-invasive biomarkers [31,
23] when quantified from circulating tumor cells collected by means of liquid biopsy [22]. In addition, the constant
improvement of small-RNA sequencing protocols has made the measurement of the expression level of the entire
miRNAome an inexpensive routine.

Quantifying the expression profile of miRNAs from raw reads, however, poses several algorithmic challenges.
Because they are short, these sequences can occur in multiple locations throughout the reference genome, causing an
aligner to make erroneous or ambiguous placements. The need to accept imperfect matching either to align polymor-
phic miRNAs [19], or to handle substitutions due to A-to-I editing [10], or to recover sequencing errors, as well as the
high degree of pairwise similarity among some groups of miRNAs, make the problem more complicated. A further
complication is the fact that some miRNAs may also be subsequences of others.

Setting stringent alignment parameters and filtering out ambiguous or imperfect reads can be useful in reducing
read/miRNA misassignments, but have the disadvantage of potentially discarding perfectly legal reads and, as a result,
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underestimating (or even altering) the expression profile. This, in turn, would cause a drop in sensitivity by making
moderately expressed miRNAs undetectable.

A typical example in this regard is that of isoMIRs [21] where either the 5’ or 3’ endpoint can be trimmed or slightly
modified [29]. Treating the clipped endpoints as errors may result in the loss of valid reads. An overly permissive
alignment, on the other hand, may map reads on multiple miRNAs, therefore only postponing the problem of deciding
on the correct assignment. At the user level, miRNA counting can be a complex and time-consuming activity due
to the numerous processing steps involved and to the number of parameters that need to be set. Typical pipelines
include: an initial check to remove low-quality reads, a pre-processing in which adapter sequences are trimmed, the
alignment of reads against a reference genome, and, finally, the quantification of the number of reads supporting each
miRNA. Although bioinformatics tools for each of the above steps typically accept and return standard file formats,
thereby making counting pipelines modular and easy to modify, each individual step requires careful design choices
dependent on the specific library preparation and sequencing protocol. In order to simplify the design of the pipeline,
some authors have conducted extensive comparative experiments (see for example [17] and [32]) and others have made
available integrated pipelines (see for example miRDeep2 [7], COMPSRA [12] and sRNAbench [1]).

In this paper, we introduce EZcount, an all-in-one software specifically designed for microRNA expression quan-
tification. The main novelty of EZcount is that of inverting the read/miRNAmatching process: instead of aligning each
read against (a portion of) the reference genome and then deriving the corresponding miRNAs, we seek the miRNA
sequences within the reads. This approach offers several advantages. First, although at a higher computational cost,
the read/miRNAmatch remains feasible even when the adapter sequence is not found. Second, it is more accurate than
sequence alignment, especially in the presence of Unique Molecular Identifiers (UMIs) [26]. In fact, if not trimmed,
aligning UMI sequences to the reference would introduce spurious mismatches at the endpoints, potentially causing
the read to be rejected. Finally, our approach enables us to correctly associate miRNAs also to those reads that would
have been discarded as low quality even though the majority of sequencing errors are accumulated outside the miRNA
sequence. As reported in [24], this case is rather common as errors are not evenly distributed across positions. For
example, the increasing probability of out-of-phase reads, typical of the sequencing-by-synthesis process, tends to
concentrate errors at the end of the read, and, as a consequence, on the 3’ adapter.

In addition to the algorithmic aspects, bioinformatics tools must also be user-friendly and easy to install in order
to be useful [11].

Although bioinformatics experts are familiar with long, complex and computationally demanding pipelines, sim-
pler solutions with a clean interface can be beneficial [25]. For example, as shown in [5], aggregating the pre-processing
steps contributes to limiting system requirements, reduces execution time by optimizing I/O operations as well as to
simplifying the pipeline. A second aspect of usability is the self-tuning of parameters according to the input char-
acteristics. This aspect is important in those situations where the user needs to process data coming from different
sources.

EZcount covers all these usability aspects by offering an all-in-one solution that, using very little system resources
(as little as 100MB of RAM per CPU thread), allows the user to perform miRNA quantification from raw reads with
a single command without the need for any pre-processing or data cleaning. Moreover, by combining our strategy of
seeking for miRNAs within reads with the adaptive algorithm to detect the adapter sequence, EZcount does not need
any a-priori knowledge about the sequencing protocol to perform counting and, consequently, it does not require any
adjustment of the input parameters.

In order to demonstrate the effectiveness of EZcount, we conducted an exhaustive comparison with several com-
monly used methods on two publicly available datasets (SRP199350 and GSE123627) which altogether include five
different library preparation protocols and three sequencing machines. For comparison, we tested three pipelines based
on general purpose aligners (BWA, Bowtie 2 and Subread) as well as three integrated solutions (mirdeep2 [7], sRN-
Abench [1] and COMPSRA [12])

Results show that, due to the ability to match reads with indels, EZcount consistently compares favourably with
the other methods in terms of the number of correctly matched reads. This higher number of matches translates into
a higher sensitivity that allows our method to quantify the expression level also of miRNAs with a small number of
supporting reads.

Although in terms of running timeEZcount is slower thanmost of the testedmethods, its highly parallel architecture
allowed us to process the largest sample in few minutes using a standard workstation.
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2. Material and Methods
From an algorithmic point of view, the miRNA counting problem can be modeled as follows. We are given a set

X of miRNA sequences and a collection of sequencing reads. Our basic assumption is that, disregarding errors in the
sequencing, each read has the form r = �sr�a , where: sr ∈ X, a is the adapter sequence, �, � are short random UMI
sequences, and  is arbitrary. Note that �, � and  can be empty, while the adapter sequence a is the same for all reads
but it is not always known beforehand.

Our task is to identify the miRNA sequence sr for each read r, therefore assigning the read r to the sequence sr.When all reads have been processed, we provide a counting profile giving for each sequence s ∈ X the number of
reads assigned to it. The task is made harder by sequencing errors in the reads and by the similarities in the miRNA
sequences, since they can differ in only a few bases and some of them are substrings one of another. Whenever possible,
we make use of the per nucleotide quality scores to assign reads in the ambiguous cases.
2.1. Keyword tree for exact string matching

Given the set X of miRNAs, our first step is to compute the subset X′ ⊆ X of minimal sequences. Formally, X′

is the largest subset of X such that if s ∈ X′ then no proper substring of s is also in X′.
We then build the keyword tree with failure links T (X′) for the set X′, as defined in [9, Sect. 3.4]. Given a read

r, using T (X′) we can find whether r contains a substring identical to a sequence s ∈ X′ and, if such is the case, the
identity of s and the position where s matches inside r. This computation takes (|r|) time, where |r| is the length
of the read, and is therefore relatively fast since it does not depend on the size of X′. Note that the definition of X′

implies that if r contains a substring identical to a sequence in X, it also contains a substring matching a sequence in
X′.
2.2. Computation of the adapter

Our next step is to identify the adapter sequence from the set of input reads. Our algorithm requires no prior
knowledge of the adapter: our only assumption is that a large enough fraction of the input reads contains a substring
exactly matching one of the sequences in X′, and that the adapter sequence begins shortly after this match.

We start by collecting statistics on the top k most frequent strings following sequences in X′. This is achieved by
means of a slightly modified version of the space-saving data structure described in [18]. We scan reads from the input
file and, for each read r, we use the keyword tree T (X′) to find whether a sequence in X′ exactly matches a substring
s of r. If this is the case, we partition r as r = �s�.

Then we check if a (fixed size) prefix of � is among the list of monitored keywords in the space-saving data
structure and update it accordingly. In order to handle indels, we extended the space-saving data structure by including
as keywords also some (large) subsequences of �. For efficiency purposes, we do not store these subsequences directly
but use rolling hashing. Two critical parameters for the space saving to be accurate are: the number of reads to process
and the number k of sequences to monitor. We do not set a fixed value for the number of reads, but we stop processing
when the empirical probability of changing the top keywords becomes lower than 5% (experimentally, this happens
after inspecting 3 to 10 thousand reads). As for k, instead, we observed that it must be greater than |Σ||�| where Σ
is the alphabet and |�| is the average length of UMI sequences. By setting k = 1000 we can handle UMIs up to 5
nucleotides long.

After collecting the frequency statistics, we derive, by means of a global multiple alignment of the kmost common
sequences, a consensus string to be used as a candidate adapter. To limit the computational cost, instead of aligning
all the possible k2∕2 pairs of sequences, we use the most common one as a reference and align the others with it. Then,
we derive the candidate adapter by majority vote. If a given position does not have a clearly dominant character we
mark it withN . A stretch ofNs at the beginning of the candidate adapter is interpreted as UMI and is trimmed.

In our experiments, we observed that some reads do not contain the complete adapter, indeed it can be truncated in
the sequencing process. To avoid discarding such reads from the analysis, we shorten the candidate adapter as much
as possible. More precisely, our working adapter will be the shortest prefix of the candidate adapter which is at edit
distance greater than d from all sequences in X. By default it is d = 2 but EZcount enables the user to set this value
from the command line. The rationale for this strategy is that we want our working adapter to be as short as possible,
but still sufficiently different from any miRNA sequence.
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2.3. Search of miRNA sequences in reads
After having computed the working adapter a, we begin the actual process of trying to assign each read to a single

miRNA sequence in X.
For each read r in the input file we first search r for a substring q within edit distance d, the same parameter as

above, from our working adapter a. This search is done using the Shift-Or algorithm [2] which is extremely fast when
the pattern is shorter than the length of a computer word and the number of errors is relatively small, which is precisely
our setting.

Unless otherwise specified in the command line, if the search fails, i.e. the adapter a is not found within the given
edit distance, the read is discarded. If a string q within edit distance d from a is found, we partition r as r = �q�,
discard q� and proceed searching the miRNA sequences in � as follows (note that with the notation introduced at the
beginning of this section it is � = �sr�). Initially, we use the Keyword Tree T (X′) to find if a substring of � exactly
matches a sequence s in X′. If this is the case, s will be our candidate sequence.

If the exact search using the Keyword Tree fails then, for each sequence s ∈ X′, we search � for a substring with
Hamming distance at most m from s. The search is done, again, using the Shift-Or algorithm and we use Hamming
(instead of Edit) distance to reduce the computational cost since the search is done for each s ∈ X′. By default we use
m = 2, but this value can be modified via command line.

At the end of this exhaustive search we are left with possibly more than one sequence with a minimal number of
mismatches with respect to the trimmed read �. Let S = {s1,… , sk} ⊂ X′ be the set of such sequences. The set S,
however, does not necessarily contain all the candidate miRNAs at minimal distance. In fact, by definition ofX′, there
may exist one or more sequences t ∈ X∕X′ such that: si is subsequence of t and both si and t have the same number
of mismatches with respect to �. If this is the case, we extend S including t.

To assign the read r to the correct miRNA, we need to decide which element of S is best suited. Since all elements
in S have the same number of mismatches with respect to �, we use their relative similarities, measured as the number
of matches, for comparison. Since a longer sequence corresponds to a higher similarity, we can narrow S to contain
only the longest elements. In most cases, this filtering causes S to contain only one miRNA which, being the most
similar, is matched to the read r. If it is not possible to unambiguously assign the read on the basis of the sequence
alone, we break ties by leveraging on the per-base quality score. Assuming that mismatches are the effect of sequencing
errors, their probability must be inversely proportional to quality. Consequently, we can apply a further filtering to S
retaining only the sequences with lowest overall quality on their mismatched positions in r. Again, if only one element
remains in S the read can be assigned to it, otherwise the ambiguity cannot be broken, the read is marked as ambiguous
and we proceed with the next read.

3. Results
We experimentally tested EZcount in order to assess its ability to perform accurate read counting and to automat-

ically identify and trim the 3’ adapter independently of any a-priori knowledge about the library preparation kit and
sequencing protocols. In addition, we performed a comparison with state of the art counting pipelines and integrated
suites in order to show the benefits of our approach. Given the wide variety of tools and options for each step of the
quantification process, a exhaustive comparison would be rather difficult. Thus, we leveraged on comparative studies in
the literature as well as on usage popularity as selection criteria. In particular, for aligner based pipelines we choose cu-
tadapt [16] for trimming, and featureCounts [15] for read counting as they are two of the most commonly used tools for
these tasks. For the choice of the aligners we followed the guidelines provided by [32]. In that work, the authors showed
that BWA, Bowtie 1 and Bowtie 2 rank as the most suitable aligners for small RNAs and suggested specific command
line options for their use. Specifically, they recommended Bowtie 2 to be run setting the --very-sensitive-local
option, whileBowtie 1was recommended to be run using the --best --strata options. We chose not to runBowtie 1
standalone but we replaced it with miRDeep2 [7] and sRNAbench [1] which are more popular and make internal use of
Bowtie 1 with the --best --strata options enabled. In the case of sRNAbench we did not have to optimize library
specific parameters but we could use those recommended by the authors in the sRNAtoolbox website2. Although not
rated in [32], we included in the comparison the Subread [14] aligner since it is part of the same software package of
featureCounts. Finally, we set BWA parameters according to the recommendations in [28].

As for integrated suites, despite the vast literature on the subject, only a limited number of options are available in
practice. Some pipelines are no longer maintained or use deprecated libraries. An example of unmaintained software

2https://arn.ugr.es/srnatoolbox/srnabench/

Geraci Manzini: Preprint submitted to Elsevier Page 4 of 10



EZcount

featureCounts
.fq

featureCounts

.sai .bam

.bam
bowtie2

.fq
cutadapt

cutadapt

cutadapt

.fq
mapper.pl

.fq
quantifier.pl

TSV file

TSV file

CSV + HTML

cutadapt
.fq .bam

TSV file

sRNAbench

COMPSRA qc COMPSRA aln COMPSRA ann TSV file

EZcount TSV + .fq

.fq .bam

TSV file

reads.fq featureCountsSubread

BWA ALN BWA SENSE

Figure 1: Graphical representation of the pipelines of the tools considered in this paper. For simplicity in the following
the tools will be denoted as (from top to bottom): bowtie2, BWA mirdeep2, Subread, sRNAbench, COMPSRA and EZcount.
Additionally, we will use EZcount* to denote EZcount with options -M 3 -S 2 -R.

is CAP-miRSeq [27] which is packaged in a old Ubuntu virtual machine with a very old version of cutadapt that does
not support the -u option required to handle the Clontech SMARTer smRNA-Seq library preparation kits. Examples
of software based on deprecated libraries are: miRge [3] and UEA small RNA Workbench [20]. miRge depends on very
specific versions of libraries while UEA small RNA Workbench depends on an outdated version of the Java runtime
environment. At the end of our investigation we identified only three integrated suites: sRNAbench, mirdeep2 and
COMPSRA [12]. Figure 1 graphically depicts the compared pipelines, while in the SUPPLEMENTARYMATERIAL
we provide the exact scripts we used. We tested two versions of the EZcount tool: one with the default settings and
another, henceforth referred to as EZcount*, with options -M 3 -S 2 -R whose main difference is to allow three
mismatches, instead of two as in EZcount, between the read and the miRNA. Notice that, due to the fact that the
Clonetech adapter is a subsequence of the miRNA hsa-miR-3613-3p, in 5 cases EZcount failed to detect it, and thus
we had to provide it via command line (see SUPPLEMENTARY MATERIAL for details).

With regard to data, we downloaded the following datasets from NCBI (see SUPPLEMENTARY RESULTS for a
detailed description) representative of the most common library preparation kits:

• a collection of 61 runs described in [30], from NCBI trace (study accession number SRP1993503), consisting of
the same human brain tissue, in various concentrations, prepared with 4 different protocols: 19 samples using the
Clontech SMARTer smRNA-Seq Kit for Illumina (Clontech), 19 samples using the Bioo Scientific NEXTflex
Illumina Small RNA Sequencing Kit v3 (NEXTflex), 10 samples using the Illumina TruSeq Small RNA Library
Prep Kit (TruSeq), and 13 samples using the New England BioLabs Next Multiplex small RNA kit (NEB). All
the samples have been sequenced with an Illumina HiSeq-3000;

• a collection of 9 samples from NCBI GEO datasets (accession number GSE1236274), described in [13], belong-
ing to two common human cell lines: HEK293T and HeLa, processed using AQ-seq (6 samples) and TruSeq (3
samples) as library preparation protocols and sequenced with an Illumina HiSeq-2500 (7 samples) and Illumina
MiSeq (2 samples).

We also created a synthetic dataset using a procedure detailed in Section 3.2. The dataset is available in our website5.
3.1. Sensitivity quantification

In miRNA counting pipelines, a non negligible fraction of reads is usually not assigned to any miRNA sequence.
This is sometimes due to reads containing sequences other than miRNAs, but more often the software fails to assign
the reads due to sequencing errors. Indeed, some of these errors cause two or more miRNAs to approximately match
the read making the assignment not straightforward: an important feature of our tool is to use quality scores to assign
even reads with errors to the correct miRNA.

3https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP199350
4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123627
5http://bioinformatics.iit.cnr.it/ezcount/synthetic.tar.bz2
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Figure 2: Comparison of counting pipelines on di�erent sequencing technologies

Although it is conceivable that unassigned reads do not affect miRNA frequency ranking, as they are proportional
to the expression level (the higher the expression the higher the probability of missing reads), these reads can bias
differential analysis causing the exclusion of significant miRNAs from subsequent studies. Moreover, as demonstrated
experimentally in [17], assigning more reads improves sensitivity of differential expression algorithms allowing even
under-expressed miRNAs to be analysed.

For the above reasons, in this section we report the outcome of two experiments aimed at 1) quantifying the overall
number of matched reads and 2) measuring sensitivity to lowly expressed miRNAs for the different pipelines.

Figure 2 reports, for each library preparation protocol tested, the distribution of the number of matched reads for all
pipelines (see SUPPLEMENTARY RESULTS for details). Note that featureCounts was set to assign ambiguous reads
to (only) one miRNA; EZcount, instead, is more conservative in that it discards reads that it was unable to disambiguate
and never assigns a read to more than one sequence.

Figure 2 shows that in general Bowtie 2, mirdeep2 and Subread are less effective than the others tools. BWA and
COMPSRA worked well in most of the cases but they showed a dramatic drop in performance dealing with NextFlex
library. We cannot fully explain the reasons for this drop but we can exclude that it depends on the read preprocessing.
In fact, Subread takes as input the same trimmed reads as BWA and returns higher counts for this dataset. From
Figure 2, we see that EZcount outperforms sRNAbench which in turns is superior to the other tools. We also see that
for certain inputs EZcount* performs even better. The Clontech data, for example, has a non negligible fraction of
isoMIRs with the last two nucleotides trimmed. In this case, the additional mismatch allowed by EZcount* nearly
doubled the number of assigned reads. Similarly, on TruSeq samples EZcount* was able to match approximately one
million more reads per sample.

To evaluate the sensitivity of the counting pipelines detecting low expression, Table 1 reports for each
method/library the number of miRNAs with at least 10 supporting reads. In general, to the higher volume of reads
that EZcount and sRNAbench are able to match, corresponds an increase in the number of these miRNAs. In this case,
however, the advantage of EZcount* over the other methods is more evident. BWA and COMPSRA are marginally less
sensitive, while Bowtie 2, mirdeep2 and Subreads are generally less capable of quantifying low signals.
3.2. Accuracy assessment

Assessing the correctness of the assignments of the reads to individual miRNAs would require the availability of
annotated reads that are impossible to produce with current sequencing protocols. As discussed in [17], comparingwith
qPCR quantification is also problematic. In fact, due to the logarithmic scale of the cycles to threshold measure, qPCR
is much less sensitive than NGS to small variations of the expression level. In the absence of a gold standard, we used
synthetically generated samples for which the read/miRNA association was known. By tracking the correspondence
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Table 1

Average number of miRNAs with at least 10 supporting reads.

GSE123627 SRP199350
Algorithm AQ-seq TruSeq Clontech NEB NEXT�ex TruSeq

EZcount* 1039 816 890 1041 1214 628
EZcount 881 661 542 780 906 470
BWA 767 555 485 739 315 430
Bowtie 2 461 715 318 522 506 339
mirdeep2 730 524 452 693 116 406
Subread 243 267 153 241 597 157
COMPSRA 696 508 436 680 76 413
sRNAbench 877 622 556 1250 849 455
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Figure 3: Assessment of the Accuracy of the counting pipelines on a synthetic dataset

of the aligned reads with the corresponding miRNA counts we were able to evaluate the accuracy of the methods.
We started with the set of human miRNA sequences annotated in mirBase v22.1 and removed elements with

different names but exactly the same sequence (e.g. hsa-miR-527 and hsa-miR-518a-5p). Synthetic samples were
produced creating 100 replicates of each sequence and applying a random perturbation to them. LetHd(x) and Ed(x),be functions that generate a random string respectively at Hamming/edit distance d from x, and let Tt(x) be the functionthat trims the last t characters from x. As a perturbation function we used

Pℎ,e,t(sequence) = Hℎ(Ee(Tt(sequence)))

with ℎ, e, t pre-defined integer constants. By repeating the above procedure for every possible assignment of the pa-
rameters ℎ, e, t in the range [0, 2], we obtained a dataset of 27 synthetic samples (containing each 100 copies of the
initial set of miRNAs perturbed with the same random perturbation function).

Given such synthetic samples, where the correct assignment of each read is known by construction, we measure
the accuracy of the tools by considering the proportion of correctly assigned reads minus the proportion of wrongly
assigned ones. This score spans the range [1,−1] achieving value 1 when all the reads have correctly been assigned,
value −1 when all the reads have been assigned to the wrong miRNA and value 0, for example, when no reads have
been assigned. The rationale for this measure is that incorrectly assigned reads introduce errors in the overall counts
and therefore they should be penalized more than unassigned reads.

Figure 3 shows a chart comparing the average score of the different tools on the synthetic dataset. The x axis reports
the overall number of errors per read, that is, the sum of the constants ℎ, e and t (hence x = 1 reports the average for
sample obtained with the perturbation functions P1,0,0, P0,1,0, and P0,0,1). With the exception of Subread and Bowtie 2
which are not designed to align miRNAs, all tools work fairly well as long as the error rate is small. Interestingly, the
use of edit distance does not yield any significant advantage to BWA compared with sRNAbench and mirdeep2 which
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use Hamming distance being based on Bowtie. COMPSRA, which is based on the STAR aligner [6], is slightly less
accurate than the other aligners. This is not surprising considering that STAR was specifically designed for transcripts
and its main feature is the handling of splicing points. Our tool shows a different profile than the other methods with
consistently higher scores. Both EZcount and EZcount* scores show a sharp drop only when the number of errors per
reads exceeds the number of allowed mismatches (2 for EZcount, 3 for EZcount*). We also see that for less than three
errors EZcount* provides only a marginal advantage over EZcount. Detailed results of each tool for all the 27 synthetic
samples are available in the SUPPLEMENTARY RESULTS.
3.3. Running time

Although running time is a secondary feature for counting pipelines, to enable the processing of large datasets it is
important that the entire process terminates in a reasonable amount of time.

To evaluate the computational efficiency of the tested pipelines, we report in Table 2 their running times expressed
as thousands of processed nucleotides per second using a single CPU core (in our experiments we use an Intel(R)
Xeon(R) CPU E5-4620 v2@ 2.60GHz). The reported running times do not include the cost of preliminary operations,
such as the construction of the indices or of the supporting data structures, which are performed only once. Notice
that, while EZcount setup took about 20 seconds to process mirbase v 22.1 on the human genome, for other methods,
in particular the integrated pipelines such as COMPSRA and sRNAbench, setting up the necessary environment and
indexing data structures can be a complicated and slow process, sometimes requiring manual intervention.

Table 2

Average processing speeds in kbp/s.

GSE123627 SRP199350
Algorithm AQ-seq TruSeq Clontech NEB NEXT�ex TruSeq

EZcount* 31.1 78.4 92.8 43.5 40.8 39.6
EZcount 99.7 387.0 411.6 158.4 136.0 185.9
BWA 13.6 9.5 141.8 67.7 10.1 98.8
Bowtie 2 916.8 921.9 1653.9 1028.2 908.8 945.1
mirdeep2 472.5 505.6 410.9 524.9 313.7 388.9
Subread 1059.7 1127.6 880.3 1053.1 835.6 877.4
COMPSRA 389.1 447.3 869.9 397.8 448.9 1904.7
sRNAbench 6138.7 8462.7 7388.1 8415.0 2232.6 4449.2

The results in Table 2 show that most methods run in time of the same order of magnitude. Notable exceptions
are BWA, which sacrificies performance for greater accuracy, and sRNAbench which runs much faster than all the
others. This performance comes from a clever construction of the index which includes only the regions surroundings
the miRNAs. Our tool ranks between BWA and the other methods, with EZcount closer to the other methods and
EZcount* closer to BWA.

4. Discussion
miRNA profiles are studied under a variety of experimental conditions that require different protocols for preparing

libraries and performing sequencing. The subsequent processing of raw data must take into account the different
characteristics of these protocols to accurately quantify the expression profiles. This, in turns, forces professionals in
bioinformatics to continuously tweak, when not change, processing pipelines.

We claim that automatically recognizing experiment-dependent parameters can reduce the need of these tweaks
making processing pipelines easier to maintain. An example in this direction is the fastp tool [5] that, among its many
features, has gained popularity for its ability to automatically detect the 3’ adapter. At the same time, tools should be
able to guarantee the same accuracy in different experimental scenarios minimizing the effort required for optimizing
the counting process. EZcount was designed to fulfil both these requirements of user friendliness and effectiveness.

Our experiments showed that,with the exception of 5 CloneTech samples, EZcount was always able to derive the
3’ adapter from input reads. Failures were due to the fact that the CloneTech protocol introduces a poly(A) sequence
before the Illumina adapter, and such sequence, being at Hamming distance 1 from the miRNA hsa-miR-3613-3p,
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makes automatic recognition of the adapter much more difficult. For such extreme cases, EZcount supports the use of
a user-supplied adapter.

The accuracy and sensitivity measurements showed that EZcount is more independent than the other methods
to library-specific characteristics of data. In fact, it achieved good results both with the GSE123627 dataset, where
spurious insertions are unlikely, and with the SRP199350 dataset, where indels are more frequent. When allowed to
admit 3 mismatches, EZcount was the only tool able to match trimmed reads of the Clontech samples doubling the
counts of sRNAbench which was the second best software. Bowtie 2, mirdeep2 and Subread showed in general to suffer
the presence of indels, while BWA and COMPSRA failed counting NEXTflex samples.

On the user’s perspective, the actual running time, and in turn the computational sustainability, depends not only
on samples sizes, CPU parallelism, and disk speed, but especially on the cost of tuning the pipeline and preparing
the supporting data structures. Making deployment straightforward was one of the drives for the development of
EZcount which depends only on two standard libraries: zlib and pthreads. Moreover, the creation of the supporting
data structures is done with a single command on standard files (the reference and the GFF of the miRNA db) and takes
as few as 20 seconds. These features make EZcount much easier to use than all the others tools which either require to
spend time creating indices or installing third-party software. From the computational point of view, being an all-in-
one solution, EZcount has the advantage of reading the input file only once and not producing large intermediate BAM
files. Moreover, in a multithreaded environment, CPU utilization is optimized bymeans of a simple consumer/producer
model in which a central thread loads the input in blocks and distributes the reads to consumer threads; each consumer
thread then performs independently the entire sequence of adapter trimming, miRNA matching and counting. As a
result, EZcount took on average 2minutes per sample using 64 threads and less than 10minutes per sample narrowing
to 16 threads.

5. Conclusion
MiRNAs are small endogenousmolecules of RNA that are known to participate in several cellular functions by sup-

pressing genes. Their short length (ranging from 18 to 26 nucleotides) and the similarity among some of their sequences
make the expression quantification based on the alignment between reads and miRNAs a challenging algorithmic prob-
lem. At the same time, accurate quantification is crucial for subsequent analyses. For example, personalized medicine
relies on the miRNA expression profiles for prognosis, diagnosis and prediction of drug response. Computing these
profiles on extracellular miRNAs, which are released in small concentrations, requires not only highly accurate but
also highly sensitive algorithms.

In this work, we presentedEZcount, a new tool that deviates from the existing pipelines by inverting the read/miRNA
matching process. Instead of aligning each read against the reference genome and then deriving the corresponding
miRNAs, EZcount searches for miRNA sequences within the reads. This new strategy allows EZcount to be more sen-
sitive than pipelines based on sequence alignment, without any loss in its accuracy. Moreover, EZcount performance
is completely independent of the sequencing parameters. Tests on about 70 samples, 5 library preparation protocols,
and 3 sequencing machines have proven the effectiveness of EZcount. In addition to being more effective, EZcount
was designed to improve the user-experience. An easy to use single-step command line interface, and the ability to
automatically identify the adapter sequence are two features of EZcount that greatly reduce the effort for deploying a
counting pipeline making it more reusable.
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