PRIN "Multicriteria data structures", 4th meeting

Repetition- and linearity-aware rank/select dictionaries

Paolo Ferragina

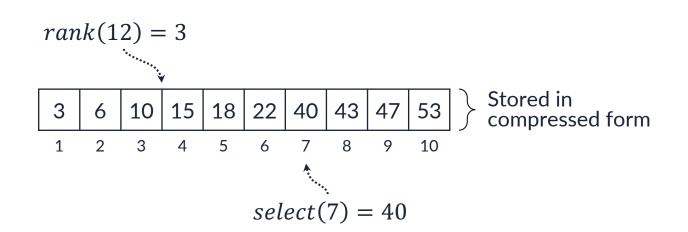
Giovanni Manzini

Giorgio Vinciguerra

(ISAAC 2021)

Compressed rank/select dictionaries

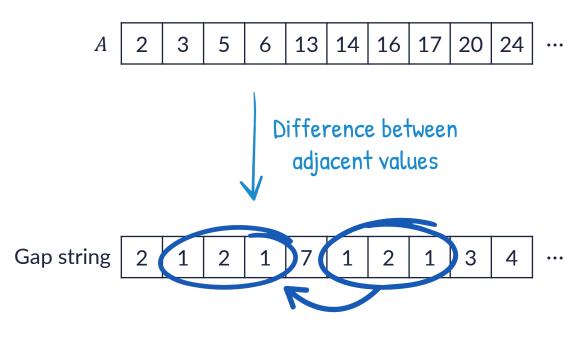
- Given a set A of n elements over an integer universe 0,1,...,u
 - 1. Store them in compressed form
 - 2. Implement rank(x): number of elements in A which are $\leq x$
 - 3. Implement select(i): return the *i*th smallest element in *A*
- Well-studied building block of succinct data structures



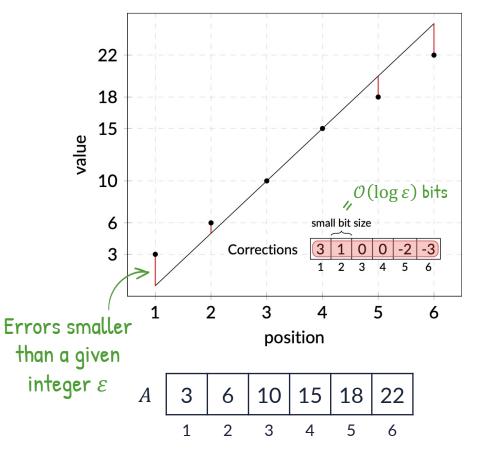
Two sources of compressibility

Approximate linearity

[Boffa et al., ALENEX '21]



Store just a "back reference"



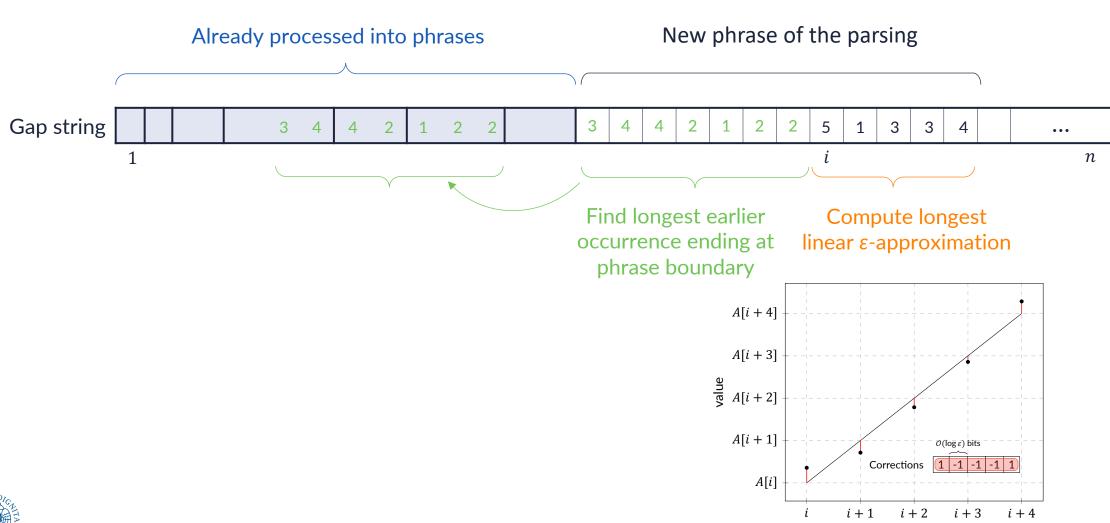
Many nonlinear points

Use piecewise linear ε-approx.

Exploiting repetitiveness and approx. linearity

- 1. Build on two known repetition-aware methods
 - Lempel-Ziv parsing, LZ-End [Kreft and Navarro, TCS 2013]
 - Block tree [Belazzougui et al., JCSS 2021]
- 2. Augment them to use linear ε -approximations with corrections
- 3. Show how to support rank and select in space bounded by the high-order entropy or a repetitiveness measure of the gaps

The LZ_{ε} parsing

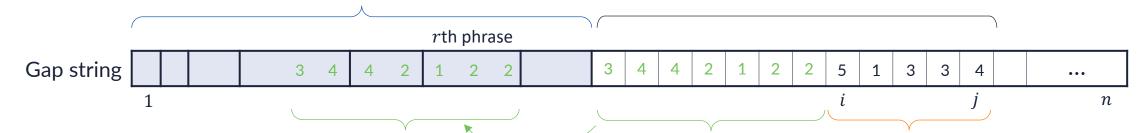


position

The LZ_{ε} parsing

Already processed into phrases

New phrase of the parsing

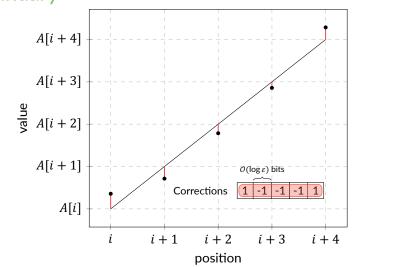


Find longest earlier occurrence ending at phrase boundary

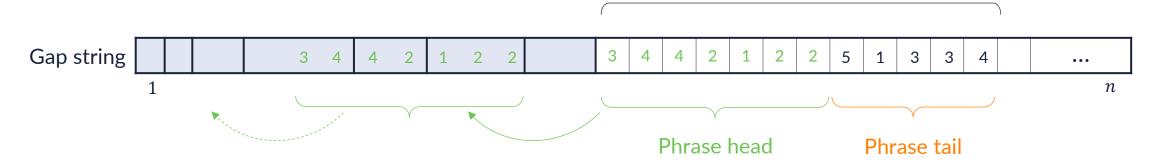
Compute longest linear ϵ -approximation

For the new phrase we store

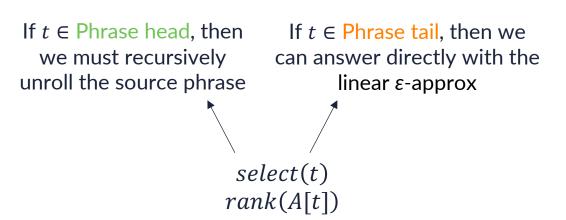
- Indexes i, j, and r
- Slope and intercept of the line
- Array of j i + 1 corrections, $O(\log \varepsilon)$ bits each



Queries in the LZ_{ε} parsing



 LZ_{ε}^{ρ} : Introduce a trade-off parameter $\rho>0$ to shorten the phrase head and make queries faster



LZ_{ε}^{ρ} bounds No worse than a traditional LZ-parsing No worse than LA-vector in space

Let σ = number of distinct values in the gap string

Select time
$$O(\log^{1+\rho} n)$$

Rank time $O(\log^{1+\rho} n + \log \varepsilon)$

Space in bits $nH_k(\text{gap string}) + \mathcal{O}(n/\log^{\rho} n) + o(n\log\sigma) + \text{space for tails}$

Exploit repetitions

Exploit approximate linearity

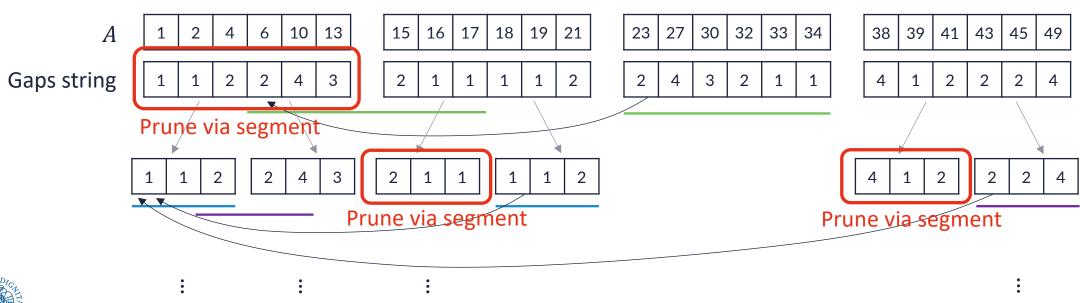
The block-ε tree

• Start with a standard block tree construction on the gap string

A 1 2 4 6 10 13 15 16 17 18 19 21 23 27 30 32 33 34 38 39 41 43 45 49 Gap string 1 1 2 2 4 3 2 1 1 1 1 1 2 2 4 3 2 1 1 1 4 1 2 2 4 4

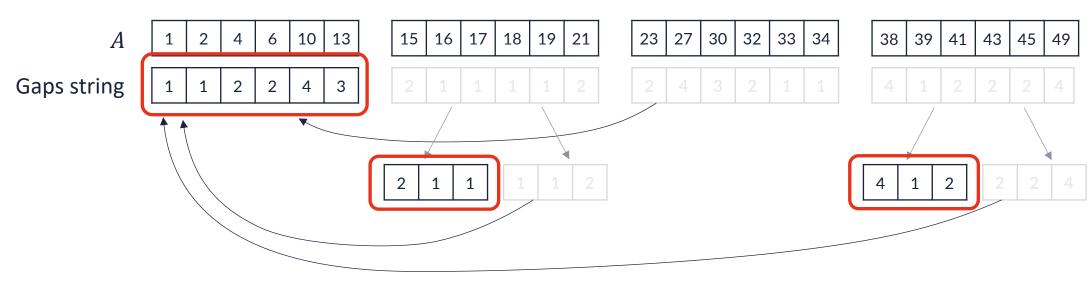
The block-ε tree

- Start with a standard block tree construction on the gap string
- Assign to each node the bit cost of encoding its subtree
- Prune subtrees that are better compressed by linear ε-approximations



The block-ε tree

- Start with a standard block tree construction on the gap string
- Assign to each node the bit cost of encoding its subtree
- Prune subtrees that are better compressed by linear ε -approximations
- Store topology, leaf linear ε-approx., and left pointers of copied blocks



Block-ε tree bounds

• Based on the δ repetitiveness measure on strings:^{1,2,3}

$$\delta = \max\{d_k/k: k=1,\dots,n\}$$
 where d_k = number of distinct substrings of length k in the gap string

• Number of levels is $h = \mathcal{O}\left(\log \frac{n}{\delta}\right)$

Select time	$\mathcal{O}(h)$
Rank time	$\mathcal{O}\left(\log\log\frac{u}{\delta} + h + \log\varepsilon\right)$
Space in bits	$\mathcal{O}\left(\delta\log\frac{u}{\delta}\log u\right)$

¹ Raskhodnikova et al., Algorithmica (2013)

² Christiansen et al., TALG (2020)

³ Kociumaka et al., LATIN '20

Experiments with the block-ε tree

- Compared with LA-vector, and a standard block tree
- Datasets: postings lists, positions of symbols in texts (DNA, URLs)
- LA-vector is 10.5× faster in select and 4.7× faster in rank than block tree, but no clear winner in space —> Combination of repetitiveness and approximate-linearity makes sense
- Our block-ε tree:
 - o wrt LA-vector, it is always slower in select and in rank
 - o wrt block tree, it is 2.2× faster in select, either faster (1.3×) or slower (1.3×) in rank
 - o has the best space in 2/12 datasets, and the second-best space in 7/12 datasets

Conclusions

- Exploit both repetitiveness and approx. linearity in rank/select dictionaries
- LZ_{ε}^{ρ} parsing
 - Combine backward copies and linear ε -approximations
 - Space complexity bounded by the kth order entropy
- Block-ε tree
 - Optimise block tree by compressing areas with high approximate linearity
 - Space-time bounds based on the δ repetitiveness measure
 - Experimentally achieves a good compromise between block trees and LA-vectors
- Future work
 - Implement LZ_{ε}^{ρ}
 - Relation of approximate linearity with other compressibility measures

